Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach.
نویسندگان
چکیده
PURPOSE A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values ("intensity"). METHODS A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. RESULTS The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5 +/- 2.8) mm compared to (3.5 +/- 3.0) mm with rigid registration. CONCLUSIONS A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.
منابع مشابه
WE-E-213CD-04: CT to Cone-Beam CT Deformable Registration With Simultaneous Intensity Correction.
PURPOSE To develop and validate a robust CT to cone-beam (CBCT) deformable image registration algorithm that can handle CBCT artifacts and intensity inconsistency, and thus can yield accurate registration results. METHODS We propose a new algorithm called Deformation with Intensity Simultaneously Corrected (DISC). DISC distinguishes itself from the original demons by performing an intensity c...
متن کاملIncorporating tissue excision in deformable image registration: a modified demons algorithm for cone-beam CT-guided surgery
The ability to perform fast, accurate, deformable registration with intraoperative images featuring surgical excisions was investigated for use in cone-beam CT (CBCT) guided head and neck surgery. Existing deformable registration methods generally fail to account for tissue excised between image acquisitions and typically simply “move” voxels within the images with no ability to account for tis...
متن کاملA contour-guided deformable image registration algorithm for adaptive radiotherapy.
In adaptive radiotherapy, deformable image registration is often conducted between the planning CT and treatment CT (or cone beam CT) to generate a deformation vector field (DVF) for dose accumulation and contour propagation. The auto-propagated contours on the treatment CT may contain relatively large errors, especially in low-contrast regions. A clinician's inspection and editing of the propa...
متن کاملDeformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery.
Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT o...
متن کاملComprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy
Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) for propagating contours between planning computerized tomography (CT) images and treatment CT/cone-beam CT (CBCT) images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contour mapping, ten intensity-based DIR strateg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 38 4 شماره
صفحات -
تاریخ انتشار 2011